分享按钮
QC检测仪器网|www.qctester.com
首页: 产品中心: 资讯频道: 展会频道: 市场研究: 供求信息: 新品介绍: 企业名录: 技术文章: 检测机构
专家解答: 学会协会: 行业资料: 电子样本: 期刊书库: 资料下载: English: QC视频: QC杂志: QC访谈: 邮寄现场
注册会员 会员中心
登陆企业
仪器搜索
热门关键字: 量仪量具  无损检测  物理测试  力学测试  材料试验  光学仪器  设备诊断监测  表面处理检测  环境检测  化学分析  实验室仪器  仪表类  超声波探伤仪
您现在的位置:首页 >  技术文章  > 流量测量技术的发展及应用要求

流量测量技术的发展及应用要求

http://www.qctester.com/ 来源: 本站原创  浏览次数:4565 发布时间:2017-11-20 QC检测仪器网

 

 

 

  一、 前言  
  近50年来开发了许多新测量原理的流量测量方法和仪表,从而应用领域有很大扩展,进入许多过去的禁区,如可以不对管道作任何改动就可作非接触测量。过去某些流量仪表用来测量某些特殊对象的流量时,感到很困难;如今,因技术上有所突破而变得容易,但是,环保工程等新兴产业提出的要求,现有手段不能满足,尚待开发。经流量仪表流转财富为数甚巨,就以我国生产一亿多吨石油及后续成品的交接计量,流转财富以1012数量级(方亿)元来计算,0.1%~0.2%计量损失就高达数十亿元。流量仪表精度虽已提高到0.1~0.2级,似乎还不满足,还要精益求精,仪表价格再高还是愿意购置。但对量大面广的仪表则尽量降低包括仪表购置费在内的各项费用。流量仪表应用技术中克服或减少管线安装影响是长期探索的工作,流体参量变化对流量仪表测量值的影响是用户非常关心的问题,近年又有不少收获,本文拟就这些方面作些讨论。  

  二、 环保业应用展望  
  环境保护中,污水中的污染物不仅要控制其排放百分比含量,更重要的是控制其排放总量,为此要求计量污水排放总量。我国工业污水排放计量的明渠污水流量仪表,80年代中期各制造厂已相继开发,1987年开始国家环保局开展调查考评10余家制造厂所提供的商品。经两年余实验室和现场考评,国家环保局认为明渠污水流量仪表立足于国内是可能的。10年后的今天仪表性能更趋完善,品种增多,在国家环境保护政策推动下,环保业对流量仪表需求增加颇快。  

  虽然国内已有污水流量仪表和总需氧量(TOC),汞、铬、镉等金属离子和砷、苯胺、酚盐等污染物含量的在线分析仪器,但要使用方各自设计,在现场配套装配,尚无由制造厂专门设计,工厂化装配调试成套供应污染物排放总量的仪表总成,这是需要开发且颇具前途的项目。  

  废气中的污染物主要指锅炉等排放的烟道气和汽车尾气中的SO2、NO2、H2S、O2等。1990年美国空气清洁法修正案规定要电厂降低会形成酸雨的二氧化硫和氮氧化合物排放总量。美国环境保护局规定773家电厂约2500台锅炉在1995年1月1日前必须装上连续排放监控系统(CEMS)。但是我国尚未颁布相似的法规。  

  现在适用测量烟道气流量的国产仪表,仅开封仪表厂的TH/TR系列热式气流量计,但仅适用于350mm以下中小管径,尚缺乏适合电厂大型烟道用仪表,国外产品代理销售则品种甚多。同污水排放一样,下一步还应开发与在线分析仪表配套的气体污染物排放总量监控仪表总成。  

  直接测量汽车废气排放量是一个非常困难的技术难题,因为所测量的是高温,且含有水汽、尘埃的强烈脉动流的流量,国外尚处于探索阶段。  

  三、 成熟仪表应用的扩展  
  针对经典或新颖仪表在某一领域应用受到的限制,经局部适应性改进,且技术有上所突破而使得在该领域应用有迅速的发展。例如差压式流量仪表对于粘性液体低雷诺数(Re=104以下)运行段和固体含量浓度较高浆液所受限制,自出现楔形管再配以密封毛细管传送的差压变送器后,差压式流量仪表在这一应用领域就得到了扩展。又如,超声流量计应用于天然气贸易交接由于测量精度不及涡轮流量计而长期未被接受;传统电磁流量计不能测量非满管液流量,科里奥利质量流量计前几年还不能用于中压气体,只适用于测量高压气体等等。近年这些仪表在技术上均有所突破,在所述领域的应用有较快发展。  

  1. 适用于天然气存储交接(custody transfer)计量的超声流量计  
  由于超声波在固体与气体界面上的传播效率低,管道外夹装超声换能器(探头)难以从管壁传送足够的声能,因此目前还没有外夹装式气体超声流量计。气体用超声流量计商品始于80年代初,大部分由测量短管和插入管壁换能器组成一体的形式出现,由于测量精度较低(1.5%~2%FS),过去未能在价格昂贵的天然气贸易结算计量领域取得一席之地,近年则出现多种型号精度较高的气体超声流量计。  

  德国Krohne公司的ALTOSONIC GFM 700型系平行双声道Z法(即一侧换能器斜方向发射声波到对面一侧换能器接收)布置于弦位置上,测量误差为±2%R,口径范围50~800mm,它对上游直管段长度要求较低,Z约为单声道的1/2~1/4。  

  德国Elster Handel公司的USM型是双声V法反射。其特点是发射换能器发射声束散射至对面一侧换能器接收)布置于弦位置上,测量误差为±2%R,上游直管段长度要求很低,仅需3倍管径长度,下游仅需2倍。  
  日本奥巴尔公司1997年有上海展示的Posonic-1型系单声道V法(即发射声波经对面管壁反射到同侧另一换能器接收)传播方式。经雷诺数修正后的测量误差为≤±1%R,口径范围为50~250mm。  

  RVG公司在1995年INTERKAMA展览会上,1997年ACHEMA(化学工业装备展览会)上展示四声道组合传播声波,两个声道是V法反射布置,为流量测量的基本信号;另两个声道之一的声束是按直径途径传播,之二的声束是按三角形反射途径传播,作为流速分布修正的辅助信号。最小测量误差为≤±0.5%R,口径范围为200~1000mm[5]。  

  据1998年赴欧考察燃气流量测量成员介绍,欧洲用于天然气计量的主流流量仪表有:①孔板差压式;②腰轮等容积式;③涡轮式;④涡街式;⑤超声式。当前德国和荷兰的专家对这些仪表的看法是:孔板差压式不推荐,但气田的高压气向外输送计量,当前它还是唯一选用的品种;涡街式和超声式推荐但不推广,待积累应用经验;涡轮式和容积式仅适用于中低压力较小管径场所。笔者认为超声流量计将有向大口径高压天然气流量测量与孔板差压式竞一高低之趋势。  

  2. 非满管电磁流量计[6]  
  非满管电磁流量计的问世,使非满管圆形管的测量误差从传统槽式流量仪表的3%~5%FS降低到1%~2%FS。自1992年Fischer+Porter公司首家向人们展示非满管电磁流量计以来,迄今共有4家制造厂的4种型号仪表推向市场。口径范围为150~1000mm。  
  非满管电磁流量计仍以法拉弟电磁感应定律测量流速,再利用某种方法测量流通截面液位高度从而求得流通面积,两者相乘获得流量。上述4种型号仪表中有两种型号产品是利用上下两组激磁线圈串接激磁和单线圈激磁(或正向和反向串接激磁),产生两种磁场分布和强度,测得两个流量信号,两者之间的比与液位高度有一定函数关系,间接求得液位高度。第3种型号的两激磁线圆轴线处于水平线,磁力线与地平线平行,一个电极置于测量管底部,流量信号取其与测量管端部接地环间电位差,该电位差与液位高度、流速两者均成比例,不需作液位高度与流速演算就可得流量,第4种型号液位高度的测量原理与电容式液位计相同。  
  由于国内尚无非满管电磁流量计生产,国外厂商及其代理要价甚高,为传统仪表的二三倍以上。  
  除上述流量传感器外形与传统结构相似的非满管电磁流量计外,还有以电磁流速检测元件和固态液位检测元件组成一体的扁平型传感器,置于安装环的底部,安装环放进待测流量的非满管管道内。上海苏州河污水治理工程曾尝试用于测量污水流量。 

  3. 低电导率电磁流量计  
  低电导率电磁流量计的电极不与被测液体接触,大面积电极紧贴衬里外壁,以电容耦合方式检测流量信号,可测量比传统仪表低2~3个数量级,即可测电导率≥5×10-8S/cm的液体,例如纯水、液氨(不是氨水)、甘油、乙二醇等,以前不能测量或测量困难的液体,国外产品也有称之为无电极电磁流量计者。  
  这种仪表在衬里有绝缘层生成的情况下仍能工作,若用传统接触电极电磁流量计,电极表面将被绝缘层覆盖使电路断路而无法工作,这一优点在扩大应用范围所起的作用,更大于降低电导率所起作用。  

  四、 流量传感器多参数测量  
  所谓多参数测量,即利用传感元件从被测对象按不同物理现象感受到一个以上变量,使流量传感(变送)器功能扩展。例如科里奥利质量流量计测量振动管频率相位差,得到质量流量;测振动管谐振频率得密度。或者在流量传感器加另一传感元件(或传感器)测量另一个变量,扩展功能或补偿另一个变量受其他量的影响,提高测量精度等性能。  

  1. 差压变送器  
  新颖的差压变送器可同时测量差压、静压和温度,并经计算单元作气体压力、温度修正,或测气体质量流量。这已为人们所熟悉,减少了独立的传感器数量,简化管线工程,降低安装费用;减少管线开孔,降低潜在泄露点,提高整体可靠性。  

  2. 科里奥利质量流量计  
  科里奥利质量流量计利用测量管二半部分振动频率相位差正比于质量流量以测流量,利用测量管谐振频率与管中被测介质密度间的函数关系求取密度。科里奥利质量流量计还从两个基本参数质量流量qm和密度ρ衍生得出体积流量qv;若被测液体是两种有一定密度差的混合液体,还可经密度演算得出一种液体在混合液中的浓度。  
  例如江苏油田用科里奥利质量流量计测量井口出油经气液分离后的油水混合液的质量流量,在测量的同时测出油含量浓度,经演算获得原油质量流量,已有5年以上的使用经验。又如在给水工业测量凝聚剂硫酸铝(明矾)浓度,求取硫酸铝贸易交接总量,防止仅测溶液质量流量时供方有意稀释的渗假行为。  
  在流程工业中还可利用密度测量控制容器内混合配比或反应过程是否达到期所需浓度;也可以判断管道中所流液体类别,指令分流到下游各自管系[10 22]。 

  3. 超声流量计  
  超声流量计利用超声波在不同液体中传播速度之间有差别的物性(例如石油声速为1295m/s,水为1388m/s),在测量流量的同时鉴别管道中液体类别。例如:欧洲在船舶卸油入库常用超声流量计测量入库流量,同时判断输送的液体是石油还是油船的仓底水。  
  英国Cranfield大学研究试图用于航空业的超声质量流量计,它是在传播时间法超声体积流量计的基础上,再利用超声测得第二参量液体阻抗和密度,演算得质量流量。原型样机水油实验表明,流量1800kg/h范围度50:1时可获±1%的精度。  

  4. 涡街流量计  
  涡街流量计利用旋涡发生体产生的卡门旋涡频率f和流速v成正比的原理求得体积流量qv=k1VA(其中k1为系数,A为流通面积),再利用旋涡发生体受到的与ρv2成正比的振荡升力F=K2ρv2(其中k1为系数,ρ为密度),两者相除得质量流量qm=(k2ρv2/k1v)A=k3ρv(其中k3为系数)。日本横河电机已推出这类涡街式质量流量计。  
  我国重庆工业自动化仪表研究所则利用旋涡发生体形成差压(ΔP)与ρv2的关系,配以差压变送器取得第二参数,作上述相似演算,求取质量流量。该研究所已有LUHG型涡街差压质量流量计推向市场。  

  五、重视经济效益  
  流过流量仪表的能源和物料都是昂贵的资源,人们重视应用流量仪表后的整体经济效益,选用流量仪表经济因素常处下主导地位。流量仪表的经济效益分为三个层次:第一层次是仪表测量误差引起多付或少收的损失;第二层次是运行费用,包括泵送能耗费,定期校准费和维修费;第三层次是初装费用,包括仪表购置费、管线配件费和工程调试费等。  

  1. 减少仪表测量误差引起的损失  
  对储存交接、贸易结算等使用的仪表,用户总是选择测量精度最高的仪表。关键测量工作所使用的仪表即使其价格昂贵至数十万元仍愿采用,因为与所减少的损失相比,还是一个小数。  

  30年前相对高精度流量仪表的基本误差普遍为(1%~1.5%)FS,最高为0.5%R,到当代则普遍为(0.5%~1%)R,最高为(0.1%~0.5%)R。但实际上应综合考虑测量系统各环节的精度,例如非实流校准的标准孔板的不确定度为1%~1.5%,若选用0.1%差压变送器的实际意义不大,配用0.5%者足矣!  
  输送交接管线物料除选用高精度仪表外,还非常普遍实行发送方和接收方各装一台仪表的双表制,相互核对。即使测量废污水也常如此,因为污水治理单位收取的污水处理费常数倍甚至十余倍洁净生活和工业用水的价格。  

  2. 降低运行费用  
  为降低流量传感器因测量产生压力损失的泵送能耗费,有采有无压损或低压损仪表的趋势,特别是大管径水量输送,无论水厂出厂水还是进厂江河原水的财务结算交接计量,无不用无压损的电磁流量计和超声流量计;流程控制的流量测量则用低压损的插入式仪表。笔者曾试算1m管径文丘利管差压流量计一年泵送能耗费足够购置一台中等价格的电磁流量计。  

  用得较多压力损失较大的节流式流量计近年又开发或重视应用若干低压损差压发生器,如v-Conen流量计和椭圆弧过渡流管。它们的压损仅为孔板的1/20~1/2。 

  3. 削减初置费  
  流量仪表初置费应包括仪表本身购置费,仪表管线截止阀等工程费用,过滤器和流动调整器等附件费用等。合在一起的总费用,国外有称作TOC(total cost of ownership)。  

  随着需要量增加,制造成本下降以及市场竞争,流量仪表总体价格缓慢下降,但其中若干品种有较大降价。例如科里奥利质量流量计从70年代末80年代初仅有唯一专利产品,初创期价格昂贵,随着专利等效,现在世界范围制造厂超过45家,竞争激烈。各制造采取措施降低价格,以占有较大市场份额。例如略为牺牲精度等性能,减少一些功能等手段,推出经济型,国外经济型仪表价格从原型号5000美元降至3500美元左右,又如国外较多厂商开发超声检测涡列的涡街流量计,其价格也比传统仪表便宜。  

  节省辅助性设置费也是削减TOC 的一个方面。近几年日本取消差压式流量计引压管以减少维护工作降低初置费用相当热闹,用近年向市场推出节流装置和差压变送器组成一体化的直接安装方式差压流量计或毛细管远传差压变送器替代传统引压管引压的差压式流量计,在日本有人作过调查,1996~1997年间新建四家工作所用近400台差压式仪表,传统引压管型、一体化直接安装型和毛细管远传型已是三足鼎立,各占三分之一。  

  六、安装影响和介质参量影响  
  流量仪表的管道安装影响在国际上一直受到重视,各阻流件(弯管、异径管、阀门等)产生流动流速分布畸变和旋转流对流量测量影响的研究,减少或消除它们影响的方法和设备(流动整直器、流动调整器)的研究开发,一直延续不断,锲而不舍。十余年来的研究成果纷纷在学术会议和专业期刊上发表,有些成果被国际标准或国家标准采纳。  

  为修订国标准ISO 9951《封闭管道中气体流量的测量--涡轮流量计》提出安装条件的要求,荷兰燃气联合会对口径150和300mm气体涡轮流量计作立体弯管影响试验,这些研究成果都在相应标准中被采用。又如日本标准JIS 8766-1989《涡街流量计流量测量方法》的解说部分,列出涡街流量计受弯管、异径管、闸阀在装用管束式流动整直器之前后的影响示例;JIS 7554-1993《电磁流量计》解说部分也列有不同开度闸阀和蝶阀、单弯管、平面和立体双弯管对电磁流量计影响示例。  

  美国Miller氏的新版《流量测量工程手册》则撰写专章闸述仪表影响量。该书汇集单声道和双声道超声流量计、涡轮流量计、涡街头流量计以及容积式流量计和科里奥利质量流量计的影响,和管束式流动整直器的效果。  
  减少或消除管道安装影响设备的研究开发也很大进展,正在修订的国际标准草案ISO/CD5167-1和ISO/CD 5167-2推荐若干类型流动调整器,其中有些类型是首次列入该标准将主要减少旋转流的设备称作流动整直器(flow straightener),如管束式、Etoile型、AMCA型;主要克服流速场畸变的设备称作(真正)流动调整器(true flow conditioner),如NEL(Spearman)型以及持有有效专利的Gallagher型和K-Lab Laws Nova 50E型。 

  如要实现各种阻流件影响和流动调整效果的试验研究,工程浩大,实验繁多,所费不贷,国内尚无单位系统地开展该项工作。看来花一定力量汇集国际上发表的研究成果,为我所用是切实有效的一种办法。  
  国外使用单位对仪表制造厂所声称介质参量,如温度、压力、粘度对某些流量仪表没有影响表示怀疑,组织财团委托第三方研究机构验证之,下文介绍若干试验实例。1.电磁流量计 文献[1]*报告了8家制造厂20台电磁流量计,经历了二年半液体温度、环境温度、粘度影响和液体电导率的实验,数据表明这些参量是有一些影响的,若相对于0.2或0.5级精度的仪表,也可以说是相当大的,液体粘度在5~200mm2/s范围内变化,示值平均变化量在0.7%~1.6%。液体温度平均影响量在(0.08~0.28)%/10℃。文献[2]*摘录了该报告中的液体温度、环境温度和粘度影响量和长期稳定性的若干数据。  

  2.科里奥利质量流量计 NEL(英国工程实验室)对不同制造厂8台口径25mm仪表分别做了粘度影响、密度影响、水温影响等,有些仪表影响甚小,有些影响明显。用水校验的仪表能否用于气体,差别有多少?Fisher Rosemount 公司称该厂两台ELITE CMF 300型仪表用空气校验数据和制造厂用水验收数据相比,相差-0.41%。PIB(德国物理技术院)用20MPa天然气校验口径15mm仪表,误差为±0.7%。中国计量学院用压力1MPa左右氧气对口径6mm的LZKI-2型仪表校验,流量在10kg/h左右时与用水校验时相比,相差-0.59%。 

 

  七、应用要求

  流量测量技术它与传统意义上度量衡计量器具的应用有很大差别,它不是简单地将流量计安装好,开表投运就一定能达到测量目的。曾经有两位专家对现场装用着地千余台流量仪表进行调查,发现约有60%所选择地测量方法不是最合适或不正确,其余地40%中,约有一半虽然测量方法合适,却存在现场布置和安装地不合理现象,这些不合适、不正确和不合理,带来了相应地测量误差。因此流量测量是一种强烈依赖于使用条件地测量,在实验室,流量计可以得到极高地精确度,但是在使用现场,一旦流体条件或环境条件有大的变化,不仅精确度无法保证,甚至无法进行正常测量。

  一台流量计出厂校验其误差优于±0.5%,但是新的仪表安装到现场开表后误差可能增至±5%~±10%并不罕见。造成这种情况的原因多种多样,如选型不合理,量程不合适,上下游直管段长度不足,安装不正确,流体物性偏离设计状态太大,工况条件超过允许值,脉动流影响,振动等环境条件太严酷等,还可以举出很多。因此流量测量是一个系统问题,包括检测装置、显示装置、前后直管段、辅助设备。而应用技术的研究,还包括测量对象本身,仅仅流量计本体性能好并不能保证获得要求的测量效果。

  流量测量仪表应用技术研究的目标是正确的使用,主要有下面几个具体内容。

 

 

(1)提高开表率 

 

  在仪表设备管理中,开表率的定义是:(仪表总台数一未正常使用的仪表台数)/仪表总台数。因此,提高开表率就是要减少无法投入正常使用的仪表。在设计院中,自控专业所设计的测量系统,开表率是反映设计人员工作质量和技术熟练程度的重要指标之一,经验丰富和认真负责的设计人员,能使开表率达到95%以上,远传压力表或通过整改达到95%以上。但是在市场经济的条件下,工程公司往往对业主实行交钥匙承包做法,要求做到的开表率就不是95%,而是100%,所设计的仪表系统如果不能正常投入使用,要为工程公司责任,那就是进行整改或更换仪表,这就意味着经济损失。因此,仪表应用技术的研究具有现实的经济意义。

  开表率是仪表应用技术水平和仪表本身品质的综合表现。测量方法和仪表对测量对象、使用环境的匹配、协调、优化、以及在此之前的设计选型和安装调试等环节都是影响开表率的重要因素。

  这些年来,我国的流量测量仪表应用技术获得了长足的进步,流量测量仪表的开表率有了很大提高,这一方面是由于仪表人员整体技术水平有了明显提高,责任意识有所增强,更重要的是仪表的品质比以前计划经济年代有了大幅度提高,进口仪表和引进国外先进技术组装的仪表比重在上升,尤其是仪表普通实现智能化后,测量范围可调比大大扩展,以前由于测量范围选择不合适而无法投入正常使用的仪表,通过变更量程一般都能投入使用。

 

 

(2)保证测量精确度

 

  流量测量精确度指的是流量测量系统所获得的精确度,它同流量计本身的精确度是有区别。仅仅流量计本身性能好,精确度高,并不一定能获得较高的测量精确度。

  要保证流量测量系统的精确度,除了合理的选型,正确安装与调试,及时的维护和保养之外,应用智能化技术对测量部分可能引入的误差进行恰到好处的补偿和校正也是一项有效的方法。例如对液体的温度膨胀系数进行补偿,不锈钢压力表对气体的温度、压力和压缩系数进行补偿,对差压式流量计的雷诺数影响和流束膨胀系数进行补偿,对各种流量计流量系数的非线性进行补偿,对容积式流量计、涡街流量计的温度影响进行补偿,对超声流量计的速度分布进行补偿等。这种补偿和校正是用系统的方法将检测部分所固有的、依*其本身无法得到克服的误差进行处理,使之消除或得到基本消除。实践表明,这一方法简单有效,很有发展前途。

  在保证测量精确度诸多的方法中,在线实流校准占有重要地位。以前大多采用离线方法校准流量计,使用该方法检定的流量计经误差修正后虽然精确度较高,但因其检定时管路的参比条件与实际使用时不同,检定时流体性质与实际使用的流体有差异,检定时的环境条件与仪表使用场所的实际环境不相同,从而造成附加的使用误差,降低了测量精确度。在线实流校准法是解决这一问题的有效方法。例如,油品计量站在建设阶段就预留标准体积管连接口,接入标准体积管后,通过阀门切换可以实现对计量站中各台流量计实现在线实流校准。现在,在天然气的分配站也要求采用在线实流校准的方法。

 

 

(3)提高流量测量系统的可靠性 

 

  用于安全联锁报警的流量仪表如果不可靠,应该联锁动作时不动作,容易酿成事故,不该动作时乱动作,容易导致不应有的停车,造成损失。工业炉窑中的燃料流量计如果不可靠,造成流路堵塞,容易导致炉子熄火,酿成事故。用于过程控制的流量仪表如果不可靠,容易为调节系统发出错误信息,导致调节系统失调,破坏生产过程的稳定,影响产品的质量、产量和物耗,造成损失。用于财务结算计量的流量计如果不可靠,容易引起计量失准,引发计量纠纷和为企业带来损失。可以看出,流量仪表的可靠性是极为重要的。 

  提高流量测量可靠性的途径主要是提高仪表本身的可靠性,选用可靠性高的仪表进行可靠性设计。近年来,流量测量仪表的可靠性获得了显著的提高,主要表现在一下几方面。

①仪表本身的可靠性有了显著提高。

②通过改进仪表的结构设计,使系统可靠性获得提高。例如采用不断流插入式结构,可在不影响工艺操作的情况下更换流量计。

超声流量传感器的夹装式结构,电磁流量传感器电极的带压更换结构,涡街流量传感器采用管外安装超声探头的结构等,都能在仪表损坏后的修理过程大大缩短修复时间。

③引入冗余技术。如采用双传感器,并对传感器的正常与否进行自动判断,将发生故障的那路信号予以剔除。

④引入自诊断技术,并通过现场总线将诊断结果送到操作站或专用的设备管理系统(AMS)予以显示报警,以及时发现故障,及早采取措施。

 

 

(4)节省费用 

 

  这里所说的费用除了仪表购置费之外,还应计入附件购置费、安装调试费、运行费、备品备件费、维护和定期校准(检定)费,而仪表的平均寿命摊入的折旧费也不是可忽视的。

  有些类型的流量计虽然购置费较低,但必须增设上下游切断阀和旁通阀等辅助设备,有时辅助设备的费用大大超过流量计本身的购置费。

  在仪表选型中应避免片面追求高性能,高精确度,因为这样做不仅增加了购置费,而且往往备品备件费也相应增加。最优的设计选型是在满足使用要求的前提下,仪表的可*性最高,维修方便,费用最省的那个方案。

 

 

(5)安全性  

 

  耐震压力表有些被测流体属易燃易爆介质,有些仪表安装场所属易燃易爆场所,仪表的选型、系统设计和安装都应符合防爆规程。 

  除了.上述目标之外,还应满足使用的其他要求,如压损要求、卫生要求、防护要求等,还应注意维修方便,有的还应考虑便于实施强制检定。(程双合)

 

 

  一、 前言  
  近50年来开发了许多新测量原理的流量测量方法和仪表,从而应用领域有很大扩展,进入许多过去的禁区,如可以不对管道作任何改动就可作非接触测量。过去某些流量仪表用来测量某些特殊对象的流量时,感到很困难;如今,因技术上有所突破而变得容易,但是,环保工程等新兴产业提出的要求,现有手段不能满足,尚待开发。经流量仪表流转财富为数甚巨,就以我国生产一亿多吨石油及后续成品的交接计量,流转财富以1012数量级(方亿)元来计算,0.1%~0.2%计量损失就高达数十亿元。流量仪表精度虽已提高到0.1~0.2级,似乎还不满足,还要精益求精,仪表价格再高还是愿意购置。但对量大面广的仪表则尽量降低包括仪表购置费在内的各项费用。流量仪表应用技术中克服或减少管线安装影响是长期探索的工作,流体参量变化对流量仪表测量值的影响是用户非常关心的问题,近年又有不少收获,本文拟就这些方面作些讨论。  

  二、 环保业应用展望  
  环境保护中,污水中的污染物不仅要控制其排放百分比含量,更重要的是控制其排放总量,为此要求计量污水排放总量。我国工业污水排放计量的明渠污水流量仪表,80年代中期各制造厂已相继开发,1987年开始国家环保局开展调查考评10余家制造厂所提供的商品。经两年余实验室和现场考评,国家环保局认为明渠污水流量仪表立足于国内是可能的。10年后的今天仪表性能更趋完善,品种增多,在国家环境保护政策推动下,环保业对流量仪表需求增加颇快。  

  虽然国内已有污水流量仪表和总需氧量(TOC),汞、铬、镉等金属离子和砷、苯胺、酚盐等污染物含量的在线分析仪器,但要使用方各自设计,在现场配套装配,尚无由制造厂专门设计,工厂化装配调试成套供应污染物排放总量的仪表总成,这是需要开发且颇具前途的项目。  

  废气中的污染物主要指锅炉等排放的烟道气和汽车尾气中的SO2、NO2、H2S、O2等。1990年美国空气清洁法修正案规定要电厂降低会形成酸雨的二氧化硫和氮氧化合物排放总量。美国环境保护局规定773家电厂约2500台锅炉在1995年1月1日前必须装上连续排放监控系统(CEMS)。但是我国尚未颁布相似的法规。  

  现在适用测量烟道气流量的国产仪表,仅开封仪表厂的TH/TR系列热式气流量计,但仅适用于350mm以下中小管径,尚缺乏适合电厂大型烟道用仪表,国外产品代理销售则品种甚多。同污水排放一样,下一步还应开发与在线分析仪表配套的气体污染物排放总量监控仪表总成。  

  直接测量汽车废气排放量是一个非常困难的技术难题,因为所测量的是高温,且含有水汽、尘埃的强烈脉动流的流量,国外尚处于探索阶段。  

  三、 成熟仪表应用的扩展  
  针对经典或新颖仪表在某一领域应用受到的限制,经局部适应性改进,且技术有上所突破而使得在该领域应用有迅速的发展。例如差压式流量仪表对于粘性液体低雷诺数(Re=104以下)运行段和固体含量浓度较高浆液所受限制,自出现楔形管再配以密封毛细管传送的差压变送器后,差压式流量仪表在这一应用领域就得到了扩展。又如,超声流量计应用于天然气贸易交接由于测量精度不及涡轮流量计而长期未被接受;传统电磁流量计不能测量非满管液流量,科里奥利质量流量计前几年还不能用于中压气体,只适用于测量高压气体等等。近年这些仪表在技术上均有所突破,在所述领域的应用有较快发展。  

  1. 适用于天然气存储交接(custody transfer)计量的超声流量计  
  由于超声波在固体与气体界面上的传播效率低,管道外夹装超声换能器(探头)难以从管壁传送足够的声能,因此目前还没有外夹装式气体超声流量计。气体用超声流量计商品始于80年代初,大部分由测量短管和插入管壁换能器组成一体的形式出现,由于测量精度较低(1.5%~2%FS),过去未能在价格昂贵的天然气贸易结算计量领域取得一席之地,近年则出现多种型号精度较高的气体超声流量计。  

  德国Krohne公司的ALTOSONIC GFM 700型系平行双声道Z法(即一侧换能器斜方向发射声波到对面一侧换能器接收)布置于弦位置上,测量误差为±2%R,口径范围50~800mm,它对上游直管段长度要求较低,Z约为单声道的1/2~1/4。  

  德国Elster Handel公司的USM型是双声V法反射。其特点是发射换能器发射声束散射至对面一侧换能器接收)布置于弦位置上,测量误差为±2%R,上游直管段长度要求很低,仅需3倍管径长度,下游仅需2倍。  
  日本奥巴尔公司1997年有上海展示的Posonic-1型系单声道V法(即发射声波经对面管壁反射到同侧另一换能器接收)传播方式。经雷诺数修正后的测量误差为≤±1%R,口径范围为50~250mm。  

  RVG公司在1995年INTERKAMA展览会上,1997年ACHEMA(化学工业装备展览会)上展示四声道组合传播声波,两个声道是V法反射布置,为流量测量的基本信号;另两个声道之一的声束是按直径途径传播,之二的声束是按三角形反射途径传播,作为流速分布修正的辅助信号。最小测量误差为≤±0.5%R,口径范围为200~1000mm[5]。  

  据1998年赴欧考察燃气流量测量成员介绍,欧洲用于天然气计量的主流流量仪表有:①孔板差压式;②腰轮等容积式;③涡轮式;④涡街式;⑤超声式。当前德国和荷兰的专家对这些仪表的看法是:孔板差压式不推荐,但气田的高压气向外输送计量,当前它还是唯一选用的品种;涡街式和超声式推荐但不推广,待积累应用经验;涡轮式和容积式仅适用于中低压力较小管径场所。笔者认为超声流量计将有向大口径高压天然气流量测量与孔板差压式竞一高低之趋势。  

  2. 非满管电磁流量计[6]  
  非满管电磁流量计的问世,使非满管圆形管的测量误差从传统槽式流量仪表的3%~5%FS降低到1%~2%FS。自1992年Fischer+Porter公司首家向人们展示非满管电磁流量计以来,迄今共有4家制造厂的4种型号仪表推向市场。口径范围为150~1000mm。  
  非满管电磁流量计仍以法拉弟电磁感应定律测量流速,再利用某种方法测量流通截面液位高度从而求得流通面积,两者相乘获得流量。上述4种型号仪表中有两种型号产品是利用上下两组激磁线圈串接激磁和单线圈激磁(或正向和反向串接激磁),产生两种磁场分布和强度,测得两个流量信号,两者之间的比与液位高度有一定函数关系,间接求得液位高度。第3种型号的两激磁线圆轴线处于水平线,磁力线与地平线平行,一个电极置于测量管底部,流量信号取其与测量管端部接地环间电位差,该电位差与液位高度、流速两者均成比例,不需作液位高度与流速演算就可得流量,第4种型号液位高度的测量原理与电容式液位计相同。  
  由于国内尚无非满管电磁流量计生产,国外厂商及其代理要价甚高,为传统仪表的二三倍以上。  
  除上述流量传感器外形与传统结构相似的非满管电磁流量计外,还有以电磁流速检测元件和固态液位检测元件组成一体的扁平型传感器,置于安装环的底部,安装环放进待测流量的非满管管道内。上海苏州河污水治理工程曾尝试用于测量污水流量。 

  3. 低电导率电磁流量计  
  低电导率电磁流量计的电极不与被测液体接触,大面积电极紧贴衬里外壁,以电容耦合方式检测流量信号,可测量比传统仪表低2~3个数量级,即可测电导率≥5×10-8S/cm的液体,例如纯水、液氨(不是氨水)、甘油、乙二醇等,以前不能测量或测量困难的液体,国外产品也有称之为无电极电磁流量计者。  
  这种仪表在衬里有绝缘层生成的情况下仍能工作,若用传统接触电极电磁流量计,电极表面将被绝缘层覆盖使电路断路而无法工作,这一优点在扩大应用范围所起的作用,更大于降低电导率所起作用。  

  四、 流量传感器多参数测量  
  所谓多参数测量,即利用传感元件从被测对象按不同物理现象感受到一个以上变量,使流量传感(变送)器功能扩展。例如科里奥利质量流量计测量振动管频率相位差,得到质量流量;测振动管谐振频率得密度。或者在流量传感器加另一传感元件(或传感器)测量另一个变量,扩展功能或补偿另一个变量受其他量的影响,提高测量精度等性能。  

  1. 差压变送器  
  新颖的差压变送器可同时测量差压、静压和温度,并经计算单元作气体压力、温度修正,或测气体质量流量。这已为人们所熟悉,减少了独立的传感器数量,简化管线工程,降低安装费用;减少管线开孔,降低潜在泄露点,提高整体可靠性。  

  2. 科里奥利质量流量计  
  科里奥利质量流量计利用测量管二半部分振动频率相位差正比于质量流量以测流量,利用测量管谐振频率与管中被测介质密度间的函数关系求取密度。科里奥利质量流量计还从两个基本参数质量流量qm和密度ρ衍生得出体积流量qv;若被测液体是两种有一定密度差的混合液体,还可经密度演算得出一种液体在混合液中的浓度。  
  例如江苏油田用科里奥利质量流量计测量井口出油经气液分离后的油水混合液的质量流量,在测量的同时测出油含量浓度,经演算获得原油质量流量,已有5年以上的使用经验。又如在给水工业测量凝聚剂硫酸铝(明矾)浓度,求取硫酸铝贸易交接总量,防止仅测溶液质量流量时供方有意稀释的渗假行为。  
  在流程工业中还可利用密度测量控制容器内混合配比或反应过程是否达到期所需浓度;也可以判断管道中所流液体类别,指令分流到下游各自管系[10 22]。 

  3. 超声流量计  
  超声流量计利用超声波在不同液体中传播速度之间有差别的物性(例如石油声速为1295m/s,水为1388m/s),在测量流量的同时鉴别管道中液体类别。例如:欧洲在船舶卸油入库常用超声流量计测量入库流量,同时判断输送的液体是石油还是油船的仓底水。  
  英国Cranfield大学研究试图用于航空业的超声质量流量计,它是在传播时间法超声体积流量计的基础上,再利用超声测得第二参量液体阻抗和密度,演算得质量流量。原型样机水油实验表明,流量1800kg/h范围度50:1时可获±1%的精度。  

  4. 涡街流量计  
  涡街流量计利用旋涡发生体产生的卡门旋涡频率f和流速v成正比的原理求得体积流量qv=k1VA(其中k1为系数,A为流通面积),再利用旋涡发生体受到的与ρv2成正比的振荡升力F=K2ρv2(其中k1为系数,ρ为密度),两者相除得质量流量qm=(k2ρv2/k1v)A=k3ρv(其中k3为系数)。日本横河电机已推出这类涡街式质量流量计。  
  我国重庆工业自动化仪表研究所则利用旋涡发生体形成差压(ΔP)与ρv2的关系,配以差压变送器取得第二参数,作上述相似演算,求取质量流量。该研究所已有LUHG型涡街差压质量流量计推向市场。  

  五、重视经济效益  
  流过流量仪表的能源和物料都是昂贵的资源,人们重视应用流量仪表后的整体经济效益,选用流量仪表经济因素常处下主导地位。流量仪表的经济效益分为三个层次:第一层次是仪表测量误差引起多付或少收的损失;第二层次是运行费用,包括泵送能耗费,定期校准费和维修费;第三层次是初装费用,包括仪表购置费、管线配件费和工程调试费等。  

  1. 减少仪表测量误差引起的损失  
  对储存交接、贸易结算等使用的仪表,用户总是选择测量精度最高的仪表。关键测量工作所使用的仪表即使其价格昂贵至数十万元仍愿采用,因为与所减少的损失相比,还是一个小数。  

  30年前相对高精度流量仪表的基本误差普遍为(1%~1.5%)FS,最高为0.5%R,到当代则普遍为(0.5%~1%)R,最高为(0.1%~0.5%)R。但实际上应综合考虑测量系统各环节的精度,例如非实流校准的标准孔板的不确定度为1%~1.5%,若选用0.1%差压变送器的实际意义不大,配用0.5%者足矣!  
  输送交接管线物料除选用高精度仪表外,还非常普遍实行发送方和接收方各装一台仪表的双表制,相互核对。即使测量废污水也常如此,因为污水治理单位收取的污水处理费常数倍甚至十余倍洁净生活和工业用水的价格。  

  2. 降低运行费用  
  为降低流量传感器因测量产生压力损失的泵送能耗费,有采有无压损或低压损仪表的趋势,特别是大管径水量输送,无论水厂出厂水还是进厂江河原水的财务结算交接计量,无不用无压损的电磁流量计和超声流量计;流程控制的流量测量则用低压损的插入式仪表。笔者曾试算1m管径文丘利管差压流量计一年泵送能耗费足够购置一台中等价格的电磁流量计。  

  用得较多压力损失较大的节流式流量计近年又开发或重视应用若干低压损差压发生器,如v-Conen流量计和椭圆弧过渡流管。它们的压损仅为孔板的1/20~1/2。 

  3. 削减初置费  
  流量仪表初置费应包括仪表本身购置费,仪表管线截止阀等工程费用,过滤器和流动调整器等附件费用等。合在一起的总费用,国外有称作TOC(total cost of ownership)。  

  随着需要量增加,制造成本下降以及市场竞争,流量仪表总体价格缓慢下降,但其中若干品种有较大降价。例如科里奥利质量流量计从70年代末80年代初仅有唯一专利产品,初创期价格昂贵,随着专利等效,现在世界范围制造厂超过45家,竞争激烈。各制造采取措施降低价格,以占有较大市场份额。例如略为牺牲精度等性能,减少一些功能等手段,推出经济型,国外经济型仪表价格从原型号5000美元降至3500美元左右,又如国外较多厂商开发超声检测涡列的涡街流量计,其价格也比传统仪表便宜。  

  节省辅助性设置费也是削减TOC 的一个方面。近几年日本取消差压式流量计引压管以减少维护工作降低初置费用相当热闹,用近年向市场推出节流装置和差压变送器组成一体化的直接安装方式差压流量计或毛细管远传差压变送器替代传统引压管引压的差压式流量计,在日本有人作过调查,1996~1997年间新建四家工作所用近400台差压式仪表,传统引压管型、一体化直接安装型和毛细管远传型已是三足鼎立,各占三分之一。  

  六、安装影响和介质参量影响  
  流量仪表的管道安装影响在国际上一直受到重视,各阻流件(弯管、异径管、阀门等)产生流动流速分布畸变和旋转流对流量测量影响的研究,减少或消除它们影响的方法和设备(流动整直器、流动调整器)的研究开发,一直延续不断,锲而不舍。十余年来的研究成果纷纷在学术会议和专业期刊上发表,有些成果被国际标准或国家标准采纳。  

  为修订国标准ISO 9951《封闭管道中气体流量的测量--涡轮流量计》提出安装条件的要求,荷兰燃气联合会对口径150和300mm气体涡轮流量计作立体弯管影响试验,这些研究成果都在相应标准中被采用。又如日本标准JIS 8766-1989《涡街流量计流量测量方法》的解说部分,列出涡街流量计受弯管、异径管、闸阀在装用管束式流动整直器之前后的影响示例;JIS 7554-1993《电磁流量计》解说部分也列有不同开度闸阀和蝶阀、单弯管、平面和立体双弯管对电磁流量计影响示例。  

  美国Miller氏的新版《流量测量工程手册》则撰写专章闸述仪表影响量。该书汇集单声道和双声道超声流量计、涡轮流量计、涡街头流量计以及容积式流量计和科里奥利质量流量计的影响,和管束式流动整直器的效果。  
  减少或消除管道安装影响设备的研究开发也很大进展,正在修订的国际标准草案ISO/CD5167-1和ISO/CD 5167-2推荐若干类型流动调整器,其中有些类型是首次列入该标准将主要减少旋转流的设备称作流动整直器(flow straightener),如管束式、Etoile型、AMCA型;主要克服流速场畸变的设备称作(真正)流动调整器(true flow conditioner),如NEL(Spearman)型以及持有有效专利的Gallagher型和K-Lab Laws Nova 50E型。 

  如要实现各种阻流件影响和流动调整效果的试验研究,工程浩大,实验繁多,所费不贷,国内尚无单位系统地开展该项工作。看来花一定力量汇集国际上发表的研究成果,为我所用是切实有效的一种办法。  
  国外使用单位对仪表制造厂所声称介质参量,如温度、压力、粘度对某些流量仪表没有影响表示怀疑,组织财团委托第三方研究机构验证之,下文介绍若干试验实例。1.电磁流量计 文献[1]*报告了8家制造厂20台电磁流量计,经历了二年半液体温度、环境温度、粘度影响和液体电导率的实验,数据表明这些参量是有一些影响的,若相对于0.2或0.5级精度的仪表,也可以说是相当大的,液体粘度在5~200mm2/s范围内变化,示值平均变化量在0.7%~1.6%。液体温度平均影响量在(0.08~0.28)%/10℃。文献[2]*摘录了该报告中的液体温度、环境温度和粘度影响量和长期稳定性的若干数据。  

  2.科里奥利质量流量计 NEL(英国工程实验室)对不同制造厂8台口径25mm仪表分别做了粘度影响、密度影响、水温影响等,有些仪表影响甚小,有些影响明显。用水校验的仪表能否用于气体,差别有多少?Fisher Rosemount 公司称该厂两台ELITE CMF 300型仪表用空气校验数据和制造厂用水验收数据相比,相差-0.41%。PIB(德国物理技术院)用20MPa天然气校验口径15mm仪表,误差为±0.7%。中国计量学院用压力1MPa左右氧气对口径6mm的LZKI-2型仪表校验,流量在10kg/h左右时与用水校验时相比,相差-0.59%。 

 

  七、应用要求

  流量测量技术它与传统意义上度量衡计量器具的应用有很大差别,它不是简单地将流量计安装好,开表投运就一定能达到测量目的。曾经有两位专家对现场装用着地千余台流量仪表进行调查,发现约有60%所选择地测量方法不是最合适或不正确,其余地40%中,约有一半虽然测量方法合适,却存在现场布置和安装地不合理现象,这些不合适、不正确和不合理,带来了相应地测量误差。因此流量测量是一种强烈依赖于使用条件地测量,在实验室,流量计可以得到极高地精确度,但是在使用现场,一旦流体条件或环境条件有大的变化,不仅精确度无法保证,甚至无法进行正常测量。

  一台流量计出厂校验其误差优于±0.5%,但是新的仪表安装到现场开表后误差可能增至±5%~±10%并不罕见。造成这种情况的原因多种多样,如选型不合理,量程不合适,上下游直管段长度不足,安装不正确,流体物性偏离设计状态太大,工况条件超过允许值,脉动流影响,振动等环境条件太严酷等,还可以举出很多。因此流量测量是一个系统问题,包括检测装置、显示装置、前后直管段、辅助设备。而应用技术的研究,还包括测量对象本身,仅仅流量计本体性能好并不能保证获得要求的测量效果。

  流量测量仪表应用技术研究的目标是正确的使用,主要有下面几个具体内容。

 

 

(1)提高开表率 

 

  在仪表设备管理中,开表率的定义是:(仪表总台数一未正常使用的仪表台数)/仪表总台数。因此,提高开表率就是要减少无法投入正常使用的仪表。在设计院中,自控专业所设计的测量系统,开表率是反映设计人员工作质量和技术熟练程度的重要指标之一,经验丰富和认真负责的设计人员,能使开表率达到95%以上,远传压力表或通过整改达到95%以上。但是在市场经济的条件下,工程公司往往对业主实行交钥匙承包做法,要求做到的开表率就不是95%,而是100%,所设计的仪表系统如果不能正常投入使用,要为工程公司责任,那就是进行整改或更换仪表,这就意味着经济损失。因此,仪表应用技术的研究具有现实的经济意义。

  开表率是仪表应用技术水平和仪表本身品质的综合表现。测量方法和仪表对测量对象、使用环境的匹配、协调、优化、以及在此之前的设计选型和安装调试等环节都是影响开表率的重要因素。

  这些年来,我国的流量测量仪表应用技术获得了长足的进步,流量测量仪表的开表率有了很大提高,这一方面是由于仪表人员整体技术水平有了明显提高,责任意识有所增强,更重要的是仪表的品质比以前计划经济年代有了大幅度提高,进口仪表和引进国外先进技术组装的仪表比重在上升,尤其是仪表普通实现智能化后,测量范围可调比大大扩展,以前由于测量范围选择不合适而无法投入正常使用的仪表,通过变更量程一般都能投入使用。

 

 

(2)保证测量精确度

 

  流量测量精确度指的是流量测量系统所获得的精确度,它同流量计本身的精确度是有区别。仅仅流量计本身性能好,精确度高,并不一定能获得较高的测量精确度。

  要保证流量测量系统的精确度,除了合理的选型,正确安装与调试,及时的维护和保养之外,应用智能化技术对测量部分可能引入的误差进行恰到好处的补偿和校正也是一项有效的方法。例如对液体的温度膨胀系数进行补偿,不锈钢压力表对气体的温度、压力和压缩系数进行补偿,对差压式流量计的雷诺数影响和流束膨胀系数进行补偿,对各种流量计流量系数的非线性进行补偿,对容积式流量计、涡街流量计的温度影响进行补偿,对超声流量计的速度分布进行补偿等。这种补偿和校正是用系统的方法将检测部分所固有的、依*其本身无法得到克服的误差进行处理,使之消除或得到基本消除。实践表明,这一方法简单有效,很有发展前途。

  在保证测量精确度诸多的方法中,在线实流校准占有重要地位。以前大多采用离线方法校准流量计,使用该方法检定的流量计经误差修正后虽然精确度较高,但因其检定时管路的参比条件与实际使用时不同,检定时流体性质与实际使用的流体有差异,检定时的环境条件与仪表使用场所的实际环境不相同,从而造成附加的使用误差,降低了测量精确度。在线实流校准法是解决这一问题的有效方法。例如,油品计量站在建设阶段就预留标准体积管连接口,接入标准体积管后,通过阀门切换可以实现对计量站中各台流量计实现在线实流校准。现在,在天然气的分配站也要求采用在线实流校准的方法。

 

 

(3)提高流量测量系统的可靠性 

 

  用于安全联锁报警的流量仪表如果不可靠,应该联锁动作时不动作,容易酿成事故,不该动作时乱动作,容易导致不应有的停车,造成损失。工业炉窑中的燃料流量计如果不可靠,造成流路堵塞,容易导致炉子熄火,酿成事故。用于过程控制的流量仪表如果不可靠,容易为调节系统发出错误信息,导致调节系统失调,破坏生产过程的稳定,影响产品的质量、产量和物耗,造成损失。用于财务结算计量的流量计如果不可靠,容易引起计量失准,引发计量纠纷和为企业带来损失。可以看出,流量仪表的可靠性是极为重要的。 

  提高流量测量可靠性的途径主要是提高仪表本身的可靠性,选用可靠性高的仪表进行可靠性设计。近年来,流量测量仪表的可靠性获得了显著的提高,主要表现在一下几方面。

①仪表本身的可靠性有了显著提高。

②通过改进仪表的结构设计,使系统可靠性获得提高。例如采用不断流插入式结构,可在不影响工艺操作的情况下更换流量计。

超声流量传感器的夹装式结构,电磁流量传感器电极的带压更换结构,涡街流量传感器采用管外安装超声探头的结构等,都能在仪表损坏后的修理过程大大缩短修复时间。

③引入冗余技术。如采用双传感器,并对传感器的正常与否进行自动判断,将发生故障的那路信号予以剔除。

④引入自诊断技术,并通过现场总线将诊断结果送到操作站或专用的设备管理系统(AMS)予以显示报警,以及时发现故障,及早采取措施。

 

 

(4)节省费用 

 

  这里所说的费用除了仪表购置费之外,还应计入附件购置费、安装调试费、运行费、备品备件费、维护和定期校准(检定)费,而仪表的平均寿命摊入的折旧费也不是可忽视的。

  有些类型的流量计虽然购置费较低,但必须增设上下游切断阀和旁通阀等辅助设备,有时辅助设备的费用大大超过流量计本身的购置费。

  在仪表选型中应避免片面追求高性能,高精确度,因为这样做不仅增加了购置费,而且往往备品备件费也相应增加。最优的设计选型是在满足使用要求的前提下,仪表的可*性最高,维修方便,费用最省的那个方案。

 

 

(5)安全性  

 

  耐震压力表有些被测流体属易燃易爆介质,有些仪表安装场所属易燃易爆场所,仪表的选型、系统设计和安装都应符合防爆规程。 

  除了.上述目标之外,还应满足使用的其他要求,如压损要求、卫生要求、防护要求等,还应注意维修方便,有的还应考虑便于实施强制检定。(程双合)

 相关信息

意见箱:
       
如果您对我们的稿件有什么建议或意见,请发送意见至qctester@126.com(注明网络部:建议或意见),或拨打电话:010-64385345转网络部;如果您的建设或意见被采纳,您将会收到我们送出的一份意见的惊喜!

①凡本网注明“来源:QC检测仪器网”之内容,版权属于QC检测仪器网,未经本网授权不得转载、摘编或以其它方式使用。
②来源未填写“QC检测仪器网”之内容,均由会员发布或转载自其它媒体,目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接或连带责任。如从本网下载使用,必须保留本网注明的“稿件来源”,并自负版权等相关责任。
③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为放弃相关权利。

热点新闻 行业资讯 政策法规
市场研究 行业资料 技术讲座
展会知识 战略合作 技术标准
展会资讯 更多 
展讯 | PolyWorks Sha
工业立市、制造强市,2024 成都工
CISILE 2024“自主创新金奖
市工业和信息化局调研组一行莅临科电仪
5月15日开幕!2024 广州国际汽
变局博弈,精进致远!ITES深圳工业
9月3-6日,2024年中国机电产品
新能源行业降本压力大!规模化生产得从
市场需求强劲, 5月立嘉工业自动化与
第十六届中国国际机床工具展览会 数智
矩阵
行业资讯 更多 
办好科技节,为工程机械行业高质量发展
奥林巴斯N600主机远程通讯的实践应
市场活动 | PolyWorks S
PolyWorks|Inspecto
案例分析 | 德朗DLU22A低频超
案例 | O’Fallon铸造使用P
【一期一遇】携手鼎泰,ARTUS 1
功能更强大,操作更轻松!LEXT O
新品发布 | A36探头强悍登场,助
捷克造币厂使用Vanta™
颠覆性突破!德朗6mm电动光学变焦内
重庆日联科技荣登“民营企业科技创新指
热销仪器
检测仪器 检验仪器 测量仪器 测试仪器 无损检测 无损探伤 材料检测 材料试验 检测材料 几何量仪器
邮箱:(E-mail)QCtester#126.com   京ICP备12009517号-5  | 京公网安备11010502024614
北京考斯泰仪器信息有限公司   电  话:(Tel)010-58440895 /   
Copyright © 2009 QCtester.com Inc.All Rights Reserved. GoogleSitemap QC检测仪器网 版权所有
检测仪器备案信息  检测仪器行业  测量仪器  检测网